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1 Introduction

The last couple of decades have witnessed remarkable advances on the larger area
of stochastic partial differential equations that are driven by Lévy noise. An worthy
reference on this subject is [28]. However, very little is available on the specific prob-
lem of degenerate parabolic—hyperbolic equation with Lévy noise, and there are still a
number of issues waiting to be explored. In this paper, we aim at deriving continuous
dependence estimates based on nonlinearities for stochastic degenerate parabolic—
hyperbolic equation driven by multiplicative Lévy noise. A formal description of our
problem requires a filtered probability space (Q, P, F, {}",},Zo), and we are inter-
ested in an L2-valued predictable process u(t, -) which satisfies the following Cauchy
problem

du(t, x) — div f (u(t, x)) dt — AAu(t, x)) dt
=o(u(t,x)dW @) + [y nu(t, x); 2)N(dz, dt), (x,t) € My, (1.1)
u(0, x) = uo(x), x eRY,

where [y = RY x 0, T)with T > 0fixed, ug : RY — Ris the given initial function,
f:Ri>Reisa given (sufficiently smooth) scalar valued flux function (see Sect. 2
for the complete list of assumptions), and A : R — R is a given nonlinear diffusion.
Regarding this, the basic assumption is that A(-) is nondecreasing with A(0) = O.
Moreover, (1.1) is allowed to be strongly degenerate in the sense that A’(-) is allowed
to be zero on an interval, see [13].

W (1) is a cylindrical Wiener process: W (t) = > ;. exBr(t) with (Br)r>1 being
mutually independent real valued standard Wiener p_rocesses and (ex)k>1 a com-
plete orthonormal system in a separable Hilbert space H. Furthermore, N (dz, dt) =
N(dz,dt)—m(dz) dt, where N is a Poisson random measure on (E, £) with intensity
measure m(dz), where (E, £, m) is a o -finite measure space. Finally, u — o (u) is an
H-valued function and (u, z) — n(u, z) is a given real valued function signifying the
multiplicative nature of the noise.

Remark 1.1 We will carry out our analysis under the structural assumption £ =
O x R* where O is a subset of the Euclidean space. The measure m on E is defined as
A x o where A is a Radon measure on O and p is so-called Lévy measure on R*. Such
a noise would be called an impulsive white noise with jump position intensity A and
jump size intensity p. We refer to [28] for more on Lévy sheet and related impulsive
white noise.

Moreover, for each v € L*(R?), we consider the mapping o (v) : H — L2(RY)
defined by o (v)er = gr(v(-)). In particular, we suppose that g € C(R) and G2(r) =
Zkz 1 g/% (r).

The Eq. (1.1) could be viewed as a stochastic perturbation of parabolic—hyperbolic
equation. Equations of this type model the phenomenon of convection-diffusion of
ideal fluids and therefore arise in a wide variety of important applications, including for
instance two or three phase flows in porous media [20] or sedimentation-consolidation
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processes [12]. In the case 0 = n = A = 0, the Eq. (1.1) becomes a standard conser-
vation laws in R?. For the conservation laws, the question of existence and uniqueness
of solutions was first settled in the pioneer papers of Kruzkov [26] and Vol’pert [32].
Inthe case 0 = n = 0, the Eq. (1.1) becomes a degenerate parabolic—hyperbolic equa-
tion in R¥. For degenerate parabolic-hyperbolic equations entropy solution were first
considered by Vol’pert and Hudajev [33], while uniqueness of entropy solutions was
first proved by Carrillo [13]. A number of authors have contributed since then, and we
mention the works of Andreianov and Maliki [1], Cockburn et al. [16], Bendahmane
and Karlsen [5,6], Evje et al. [21] and Vallet [29].

1.1 Stochastic balance laws

The study of stochastic balance laws has so far been limited mostly to equations of the
type (1.1) with A = 0. In fact, Kim [25] extended the Kruzkov well-posedness theory
to one dimensional balance laws that are driven by additive Brownian noise, and Vallet
and Wittbold [31] to the multidimensional Dirichlet problem. However, when the noise
is of multiplicative nature, one could not apply a straightforward Kruzkov’s doubling
method to get uniqueness. This issue was settled by Feng and Nualart [23], who
established uniqueness of entropy solution by recovering additional information from
the vanishing viscosity method. The existence was proven using stochastic version
of compensated compactness method and it was valid for one spatial dimension. To
overcome this problem, Debussche and Vovelle [17] introduced kinetic formulation
of such problems and as a result they were able to establish the well-posedness of
multidimensional stochastic balance law via kinetic approach. A number of authors
have contributed since then, and we mention the works of Bauzet et al. [2,3], Biswas et
al. [7,8]. We also mention works by Chen et al. [14], and Biswas et al. [9], where well-
posedness of entropy solution is established in L” N BV, via BV framework. Moreover,
they were able to develop continuous dependence theory for multidimensional balance
laws and as a by product they derived an explicit convergence rate of the approximate
solutions to the underlying problem.

1.2 Degenerate stochastic balance laws

Stochastic degenerate parabolic—hyperbolic equations are one of the most important
classes of nonlinear stochastic PDEs. Nonlinearity and degeneracy are two main fea-
tures of these equations and yields several striking phenomena. In fact, due to strong
degeneracy, one cannot expect smooth solutions even if the initial data is smooth.
Existence and uniqueness of solutions of (1.1) was first settled by Bauzet et al. [4] (in
the case of = 0), and by Biswas et al. [10] (in the case of  # 0). In fact, they have
extended their previous works ([2] and [8], respectively) to the context of degenerate
parabolic-hyperbolic problem in the spirit of Carrillo’s work [13]. The existence of
solution is proved by using a vanishing viscosity method, based on the compactness
proposed by the theory of Young measures. The uniqueness of the solution is obtained
via Kruzkov’s doubling variable method. We also mention the work of Debussche et
al. [18], where the authors have established the well-posedness theory for solutions of
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the Cauchy problem (1.1) in any space dimension. They have adapted the notion of
kinetic formulation and kinetic solution which has already been studied in the case of
hyperbolic scalar conservation laws in both deterministic [27] and stochastic setting
[17].

Independently of the smoothness of the initial data uq, due to the presence of nonlin-
ear flux term, degenerate diffusion term, and a nonlocal term in Eq. (1.1), solutions to
(1.1) are not necessarily smooth and weak solutions must be sought. Before introduc-
ing the concept of weak solutions, we first recall the notion of predictable o -field. By a
predictable o -field on [0, T'] x 2, denoted by Pr, we mean that the o-field generated
by the sets of the form: {0} x A and (s, #] x Bforany A € Fyp; Be F;, 0 <s,t <T.
The notion of stochastic weak solution is defined as follows:

Definition 1.1 (Stochastic weak solution) A square integrable L2(R%)-valued {F; :
t > 0}-predictable stochastic process u(¢) = u(t, x) is said to be a weak solution to
our problem (1.1) provided

(i) u e L3(Q x I7) and A(u) € L%((0, T) x €: HY(R?)).
(ii) %[u — Jyouls. AW (s) = [ [ (s, ):2) Nz, ds)] e L*((0,T) x
Q; H~'(R?)) in the sense of distribution.

(iii) For almost every ¢ € [0, T] and P— a.s, the following variational formulation
holds:

9 t t r -
<5[u—/0 o (uls, »))dW(s)—/O '/En(u(s, '),z)N(dz,ds)],v>(H_l(Rd)’Hl(Rd))

+/ {VA(u(z,x))+f(u(r,x))}.wdx -0, (1.2)
Rd

forany v € H'(RY).

However, it is well-known that weak solutions may be discontinuous and they are
not uniquely determined by their initial data. Consequently, an admissible condition so
called entropy solution must be imposed to single out the physically correct solution.
Since the notion of entropy solution is built around the so called entropy flux triple,
we begin with the definition of entropy flux triple.

Definition 1.2 (Entropy flux triple) A triplet (8, ¢, v) is called an entropy flux triple

if B € CZ(]R) and >0, =(1,0,...,8) : R— R4 is a vector valued function,
and v : R — R is a scalar valued function such that

¢'(r)y=p'(r)f'(r) and V'(r) =B r)A(r).
An entropy flux triple (B, ¢, v) is called convex if 8”(s) > 0.

To define entropy solution, we first define associated Kirchoff’s function of A,
denoted by G(x) as G(x) = f(;‘ A’(r)dr. With the help of a convex entropy flux
triple (B, ¢, v), we present a formal derivation of entropy inequalities:
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For a small positive number ¢ > 0, assume that the parabolic perturbation
dug(t, x) — AAg(ug(t, x)) dt — divy f(ue(t,x))dt - = o (us(t, x)) dW(t)

+ / n(us(t, x); 2)N(dz, dr) (1.3)
E

of (1.1), with A.(x) = A(x) + &x, has a unique weak solution u.(¢, x). Note that
this weak solution u, € L?((0, T) x Q; H'(R%)). This enables one to derive a weak
version of the [t6-Lévy formula (as proposed in [10, 18,22]) for the solutions of (1.1).

Let (B8, ¢, v) be an entropy flux triple. Given a non-negative test function ¥ €
Ccl’2([0, o0) x R?), we apply generalised version of the It6-Lévy formula to yield, for
almost every T > 0,

/ﬁ(us(T,X))lﬁ(T,X)dx—/ Bue (0, x)) ¥ (0, x) dx
Rd R

= Bug(t, x)) 0;y(t, x)dxdt —/ Vr(t,x) - C(ue(t, x))dx dt

HT l-IT
+ Z/H 8 (e (1, X)) B (ue (2, X)) (¢, x) dPy (1) dx
k>1 T

+% / G (ue (1, X)) B (ue (1, )Y (t, x) dx dt
My

1
+/ // n(ug(t,x);z)ﬁ/(ug(z,x)-I—An(us(t,x);z))w(t,x)dkﬁ(dz,dz)dx
ny JE Jo

1
+/ // (1= W0 (ue(t, x); 2)B" (ue(t, x)
Iy JEJO
+ An(ue(t, x); 2)) Y (t, x) dhm(dz) dx dt

—/ (VY (t, x) - VBue(t, x)) + eB" (ue (t, %)) |Vug (t, ) *9 (2, x)) dx dt
Mr

— B (ugs(t, x)) VG (ug (2, x))|21//(l, x)dxdt +/ v(ug(t, x))AY(t, x)dx dt.

Ir My

Since $ and ¥ are non-negative functions, we obtain

05/ ,B(uS(O,x))w(O,x)dx—}—/ {ﬁ(ug(t,x)) o (z, x)
R4 Iy
VU, x) - C(usr, x))} dx di
—/ B (ue(t, x)) VG (ue(t, X)) |>W (2, x) dx dt
Iy
+/ V(e (t, X)) AW (1, x) dx di + O(e)
7

+ D[ arluet, )P (ue(t, )Y (e, x) dBy (1) dx
Iy

k>1
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41 G?(ue(t, X)) B (ue(t, )Y (¢, x) dx dt

2 ),
1
+/ // MGe (. x): 2B (e 0. )
ny JEJo

+ an(ue(t, x); 2)) ¥ (t, x) dr N(dz, dt) dx

1
+/ // (1= 20 (ue(t, x); 2)B" (ue(t, x)
nr JEJO

+ An(ue(t, x); 2))¥ (¢, x) dhm(dz) dx dt.

Clearly, the above inequality is stable under the limit ¢ — O, if the family {u},. ¢ has
Lﬁ)c—type stability. Just as the deterministic equations, the above inequality provides
us the entropy condition. We now introduce the notion of stochastic entropy solution
as follows:

Definition 1.3 (Stochastic entropy solution) A square integrable L>(R%)-valued {F; :
t > 0}-predictable stochastic process u(t) = u(t, x) is called a stochastic entropy
solution of (1.1) if

(i) Foreach T > 0,

Gu) € L*((0,T) x @; H'(RY)), and sup E[[Ju(z, )|3] < +oo.
0<t<T

(i1) Given a non-negative test function ¥ € CC1 ’2([0, 00) X R ) and a convex entropy
flux triple (B, ¢, v), the following inequality holds:

/H” [ﬁ(u(t, XNVt X) + (s, ) AY (1, x) — VY (t, x) - CQulr, x))]dx dt

+ Z g (u(t, x)) B (u(t, )Y (1, x) dpy (1) dx
Iy

k>1

+%/ G (u(t, x))B" (u(t, X)) (¢, x) dx dt
Iy

1
+/ // nut, x); DB (ut, x) + 20, x); )Y, x) dh N(dz, di) dx
Iy JE JO

1
+/ // (1= e, x); D" (u(t. x)
ny JEJo

+ Anu(t, x); 2)) ¥ (t, x) dAm(dz) dx dt

> B (u(t, )| VGu(t, x)*¥(t, x)dx dt
My

_/Rd Buo(x)Y (0, x)dx, P—as. (1.4)

Due to nonlocal nature of the It6—Lévy formula and the noise-noise interaction,
the Definion 1.3 alone does not give the L'-contraction principle in the sense of aver-
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age and hence the uniqueness. In fact, classical “doubling of variable” technique in
time variable does not work when one tries to compare directly two entropy solu-
tions defined in the sense of Definion 1.3. To overcome this problem, the authors in
[4,10] used a more direct approach by comparing solutions of two regularized prob-
lems and subsequently sending the regularized parameter to zero, relying on “weak
compactness” of the regularized approximations.

In order to successfully implement the direct approach, one needs to weaken the
notion of stochastic entropy solution, and subsequently install the notion of so called
generalized entropy solution.

Definition 1.4 (Generalized Entropy Solution) A square integrable L?(R x (0, 1))-
valued {F; : t > O}-predictable stochastic process u(t) = u(t,x,«) is called a
generalized stochastic entropy solution of (1.1) if

(i) Foreach T > 0,

Gu) € L*((0,T) x 2 x (0, 1); H'(RY)), and sup E[|u(t, -, )|3] < 0o

0<t<T

(i1) Given a non-negative test function y € CCI’Z([O, 00) x R9) and a convex entropy
flux triple (B, ¢, v), the following inequality holds:

1
/H /O {ﬁ(u(t, x, )0 (t, x) +vu(, x, ) Ay (z, x)

VU, x) - Cu, x, a))] do dx dt

+Z/ / gr(u(t, x, ) (u(t, x, )y (t, x) do dpy (1) dx

k>1

/ / G?(u(t, x, ) B" (u(t, x, )Y (t, x) do dx dt

/ / // nu(t, x, a); 2)p (u(, x, a)
Iy

+ an(u(t, x, ); 2)) ¥ (t, x) da dr N(dz, dt) dx

1 1
+/ /// (1= u(t, x, a); 2B (u(t, x, @)
Iy JO EJO

+ An(u(t, x, @); 2)) ¥ (t, x) da drm(dz) dx dt

1
Z/ /ﬂ”(u(t,x,oz))IVG(u(t,x,a))lzlﬂ(t,X)dadxdt
Iy JO
—/dﬁ(uo(x))w(O,x)dx, P —as. (1.5)
R

This definition rests on the possibility to pass to the limit by using the theory of
Young measures. We will not use explicitly this definition in the sequel since our aim
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is to use the well posedness theory of the entropy solution in the sense of Definition
1.3 described in [4,10], where the authors have revisited [1,13,15]; but we will use
the compactness proposed by the Young measures theory.

In fact, this compactness argument yields a convergence in law of the sequence of
approximation where the new probability space proposed by the theorem of Skorohod
is (2 x (0,1),dP x da). This generalized solution can be seen as a “martingale
solution” and the uniqueness result developed in [4,10] essentially used a Gyongy—
Krylov type argument based on the uniqueness of the laws.

1.3 Scope and outline of the paper

The above discussions clearly highlight the lack of stability estimates for the entropy
solutions of degenerate parabolic—hyperbolic stochastic balance laws driven by Lévy
noise. In this paper, drawing preliminary motivation from [9,14,21], we intend to
develop a continuous dependence theory for stochastic entropy solution which in turn
can be used to derive an error estimate for the vanishing viscosity method. However, it
seems difficult to develop such a theory without securing a BV estimate for stochastic
entropy solution. As a result, we first address the question of existence, uniqueness of
stochastic BV entropy solution in L2(R?) N BV (RY) of the problem (1.1).

We need to mention that the BV (R¥) regularity needed in the sequel requires to
assume that the space variable x is not a variable of the functions g and 5. See for
exemple in [9, 14].

Making use of the crucial BV estimate, we provide a continuous dependence esti-
mate and error estimate for the vanishing viscosity method provided initial data lies in
ug € L2 R N BV (RY). Finally, we turn our discussions to more general degenerate
stochastic balance laws driven by Lévy processes, namely when the functions o, n
appear in the Lévy noise has explicit dependency on the spatial position x as well.
In view of the discussions in [9, 14], in this case we cannot expect BV estimates, but
instead a fractional BV estimate is expected. However, that does not prevent us to
provide an existence proof for more general class of equations in L?(R%).

The rest of the paper is organized as follows: we describe technical framework
and state the main results in Sect. 2. In Sect. 3, we derive uniform spatial BV bound
for viscous solutions. Using this bound, we establish well posedness of BV entropy
solution of the Cauchy problem (1.1). Section 4 is devoted on deriving the continuous
dependence estimate on nonlinearities, while Sect. 5 deals with the error estimates.
Finally, in Sect. 6, we establish a fractional BV estimate for a larger class of degenerate
stochastic balance laws.

2 Technical framework and statement of the main results
Throughout this paper, we use the letter C to denote various generic constants. There
are situations where constant may change from line to line, but the notation is kept

unchanged so long as it does not impact central idea. Moreover, for any separable
Hilbert space H, we denote by N, 3) (0, T, H), the Hilbert space of all the predictable H -
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valued processes # such that ]E[ fOT |lu ||%{] < +00. Furthermore, we denote BV (R?)

as the set of integrable functions with bounded variation on R? endowed with the norm
lulgy®dy = lullprrey + T Vy(u), where T'Vy is the total variation of u defined on
R?. The primary aim of this paper is to derive continuous dependence estimates for
the entropy solutions of the Cauchy problem (1.1), and we do so under the following
assumptions:

A.1 The initial function u is a Fy measurable random variable satisfying

A.2 A : R — Ris anon-decreasing Lipschitz continuous function with A(0) = 0.
Furthermore, we assume that A” is bounded.

A3 f = (fi, fr,..., fa) : R — R< is a Lipschitz continuous function with
fr(0) =0, forall 1l <k <d.

A.4 The space E is of the form O x R* and the Borel measure m on E has the form
A X wu, where A is a Radon measure on O and p is so-called one dimensional
Lévy measure.

A.5 We assume that g (0) = 0, forall k > 1. Moreover, there exists positive constant
K > 0 such that

z | gk (u) — gk(v)’2 < Klu—v|*, and G*(u)
k=1

= g2 w) < K |uf?, forall u,v € R.
k>1

A.6 There exist positive constants A* € (0,1), C > 0 and h(z) € L%(E, m) with
0 <h(z) <1lsuchthatforallu,veR; z€FE

[n@u: 2) = n(v; 2)| < A*|u — vlh(z), and [n(u,2)| < Clulh(z).

Moreover, we assume that n(0, z) = 0, forall z € E.

Remark 2.1 We remark that, one can accommodate polynomially growing flux func-
tion as a result of the requirement that the entropy solutions satisfy L? bounds for all
p > 2. This in turn forces to choose initial data that are in L?, for all p. However, we
have chosen to work with the assumptions A.1and A.3. The assumption A.6 is natural
in the context of Lévy noise with the exception of A* € (0, 1), which is necessary for
the uniqueness. Finally, the assumptions A.1-A.6 collectively ensures existence and
uniqueness of stochastic entropy solution, and the continuous dependence estimate as
well.

Remark 2.2 In view of the assumption A.5, for any v € L2(RY), o (v) is a Hilbert-
Schmidt operator from the separable Hilbert space H to L*(R¢). Therefore, for
a given predictable process v € L2(2; L%(0, T; L*(R%))), the stochastic integral
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t— fot o (v)dW (s) is well-defined process taking values in a Hilbert space L2(RY).
Moreover, the trajectories of W are P- a.s. continuous in Hy D H, where

2
Hp := v:kaek: Zz—g<+oo

k>1 k>1

2
endowed with the norm ||v||]%10 = D1 z—’; with v = > ;| vkex. Furthermore, the
embedding H — Hy is Hilbert-Schmidt (see [19]).

Like its deterministic counterpart, existence of entropy solution largely related to
the study of associated viscous problem. One can follow the argument presented in
[4,10,30] to ensure existence of weak solutions for the problem (1.3). More precisely,
we have the following proposition from [4,10,30].

Proposition 2.1 Let the assumptions A.1, A3, A.5, and A.6 hold and A : R — R
is non-decreasing Lipschitz continuous function. Then, for any ¢ > 0, there exists a
unique weak solution u, € N,%(O, T, HY(R?)) with 3, (ug — f(; o(ug(s,)dW(s) —
Jo S n(ue(s, ;2N (dz,ds)) € L2(Q x (0,T), H"'(R?)), to the problem (1.3).
Moreover,us, € L*°(0, T; LZ(QXR‘J)) andthere exists a constant C > 0, independent
of e, such that

T T
2 2 2
sup B[ Jus0)]2] + ¢ / E[ [ Vue(s) 2] ds + / E[ VG s [2]as < .
0<t=T 0 0
2.1
where G is the associated Kirchoff’s function of A.
We are now in a position to state the main results of this paper.

Main theorem (Continuous dependence estimate) Let the assumptions A.1-A.6 hold
for two sets of given data (ug, f, A, o, n) and (vo, g, B, 5, 7). Let u(t, x) be any BV
entropy solution of (1.1) with initial data ug(x) and v(s, y) be another BV entropy
solution with initial data vo(y) and satisfies

dv(s,y) — AB(v(s, y))ds — divg(v(s, y))ds = o (v(s, y)) dW(s)

+/ (s, y); 2) N(dz, ds). (2.2)
E

Moreover, define

Er(o,0) :=§1;%W; £(0,5)% = ggk(a, 5)%,
. (1 2
D7) s=sup | ) I, ),
u#0JE |ul
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and, in addition, assume that "' € L. Then, there exists a constant Cr, only depend-

ingonT, |uolgy ay [volgy@ay | f" oo | f'llocs 1@ 11 and || B ||oo such that for a.e.
0<t<T < +o0,

E[/ lut, x) — v(t,x)|d>(x)dx]
Rd
< cre!{8 [ Juoto) = wew]a]
RY

+maX[5(0, 5),\/1?(77,'77)]x/;+ " = & lloct

+max {14 = Blls, VE@.5), yD(n,ﬁ)}ﬁ},

where ® € LY(RY) such thar 0 < ®(x) < 1, forall x € R4,
As a by product of the above theorem, we have the following corollary:

Main corollary (Rate of convergence) Let the assumptions A.1-A.6 hold and " €
L®. Let u(t,x) be any BV entropy solution of (1.1) with ]E[|u(t, ')|Bv(Rd)] <

E[|u0(~)|BV(Rd)] and uy (s, y) be a weak solution to the problem (1.3). Then there

exists a constant C depending only on uo| gy ra), | f" los || f'lcc, and || A'|| o such
that for a.e. t > 0,

El:llue(t’ ) —u(t, ')”LI(R‘I)] < Cce’! 8%.

Before concluding this section, we introduce a special class of entropy functions,
called convex approximation of absolute value function. To do so, let 8 : R — R be
a C™ function satisfying

BO)=0, B(=r)=B(r), B(-r)==p(), B =0,
and

—1 whenr < —1,
B'(r)=1e[—=1,1] when Ir| <1,
+1 whenr > 1.

For any £ > 0, define 8¢ : R — R by B:(r) = éﬂ(g). Then
1 M,
Irl—M§ < Be(r) < |r| and |Bz(r)| = ?lmgg, (2.3)

where M| := sup, < ||r| - ,B(r)| and My := sup, <1 |B"(r)].
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Remark 2.3 Note that if B¢ is an even, non-negative, convex function and if ﬁé’ is
non-increasing on the positive reals, then, for any positive r,

C5r2 > 2Be(r) = 2/r /S Igé’(o)do-ds > rZﬁé/(r) (2.4)
0 JO
and Va > 1,
Be (ar) = o / r / S Bl (ao)dods < o B (r). 2.5)
0 Jo

Moreover, for 8 = B¢, we define

@by = [} BLor—b) fl(r)dr,
fPa.b) = (f@.b). fLab)..... flaDb),
AP(a,b) = [} BL(r —D)A'(r)dr.

3 A priori estimates

In this section, we derive uniform spatial BV bound for the solutions of degenerate
parabolic-hyperbolic stochastic balance laws driven by Lévy noise (1.1) under the
assumptions A.1-A.6. Like its deterministic counter part, we first secure uniform
spatial BV bound for the viscous solutions, i.e., solutions of (1.3). Regarding this, we
have the following theorem.

Theorem 3.1 Let the assumptions A.1-A.6 hold. For e > 0, let u.(t, x) be a solution
to the Cauchy problem (1.3). Then there exists a constant C > 0, independent of ¢,
such that for any time t > 0,

SupE llue (1)1 ey ) = CE[ ol ey |+ SpE[ T Ve (01) | < B[ T Vo) ]
e>0 >0

Remark 3.1 Inview of the lower semi-continuity property and the positivity of the total
variation 7'V, we point out thatu +— E[T V, (u)] makes sense forany u € LY QxR
as a real-extended Isc convex function.

Proof For a proof of the first part of the above theorem, consult Appendix 7. For the

second part, we proceed as follows: Set ¢ > 0 and let u, be the weak solution to the
problem (1.3) and v, be a weak solution to the stochastic equation

dvg(t,x) — AAg (v (2, x)) dt — divy f(ve(t, x)) dt = o (ve(t, x))dW (2)
+/ n(ve(t, x); 2)N(dz, d1),
E

v:(0, x) = vo(x), 3.1
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Then, it is evident that u, — v, is a stochastic weak solution to the problem

d(ug(t, x) — ve(t, X)) — A(Ag (e (t, X)) — Ap (0e(t, X)) dt — dive (f (ue(r, X)) — f(ve (1, x))) dt
= (0 (ue(t, %)) — o (e (£, x))) dW (1) + [ (n(ue (2, x); 2) — n(ve (2, x); 2)) N(dz, dt),
Ug — Us‘([:()_x) = ug(x) — vo(x).

Note that u, — v, is a weak solution and not a strong one. Thus, we apply a slight
modification of [t6—Lévy formula (as proposed in Fellah [18,22] and Biswas et al.
[10]) to fRd Be (e — ve)dx, where B is defined in Sect. 2 and then take expectation.
The result is

IE[/ B (ug(t, Xx) — v (t, x)) dx]
Rd
= E['/Rd Be (uo(x) — vo(x)) dx:|
t
- E[/ / BE (e (5, X) = ve(s, X))V (Ag (e (s, X)) — Ag (ve (s, x))) - V(ue (s, x) — ve(s, x)) ds dx]
R Jo ¢
t
g /]R ) /0 B e (5,30 = o5, 0) (e (5, 0) = F (w5, 20) - ¥ e (5, ) = v s, ) s v
1 1
+ EE[Z/d / BY (1 (s, ) — ve (5, 2)) (& (e (5, ) — gk (ve (s, ) ds dX]

/R’/ // (1—)0/35 ue (s, x) — (s, %) + (e (s, x); 2) — n(e (s, x); Z)))

X (77(145(3, x); z) — n(ve (s, x); z)) dim(dz)ds dx}
=A+B+C+D+G. 3.2)

Our aim is to estimate each of the above terms separately. Let us first consider the
term 3. Note that, since —A;(x) < —¢g, we have

= —E /d/ 'BE ug(s, x) — vg(s,x))A’g(ug(s,x))‘V(ue(s,x)—UE(s,x))’zdsdx]
R
/Rd/ BE (e (s, x) — ve (s, %)) (AL (ue (s, X)) — AL (ve(s, x)))
Ve (s, y) - V(ug(s, Xx) — ve(s, x)) ds dx]
< —SIE / / ﬂé ug(s, x) — vs(s,x))’V(ug(s,x)—vg(s,x))‘zdsdx]

—E /Rd/ B (e (s, %) = ve(s, X)) (AL (e (5, X)) — AL (ve(s, X))

Voue(s, y) - V(ug(s, X) — ve(s, x)) ds dx]
= By + Bs. 3.3)
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Now consider the term B,. Thanks to the Young’s inequality, we obtain

! 2
|Bz| SZE[/ / ,Bé’(ug(s,x) — vg(s,x))‘V(ug(s,x) — vg(s,x))) dsdx]

+CEE / / B (15, x) — ve (s, 1)) (AL (1 s, 1))

— AL (ve (s, x))) | Vv (s, x)|2 ds dx]. (3.4)

Thus, combining (3.4) and (3.3), we get

B<-— —IE / / 'BE ug(s, x) — vg(s,x))’V(ug(s,x) - vg(s,x))‘zdsdx]

+C(8)E/ /f% ug(s,x) — vs(s,x))(A’(ug(s,x))

— A5, 0) [V (s, 0| ds d |
=83 + Bs. (3.5)

Let us focus on the term B4. Note that, in view of last part of the assumption A.2, A”
is bounded. Using that along with the estimate (2.1) and the fact that rz,B (r) < C&
for any r € R, we estimate B, as

13
B4§C(S)%'E// [Vues, 0 d ds |

< SC(S)/ |Vv8(s)||2]ds <C(e)é — 0, as & — 0 (keeping e > O fixed).

Next we move on to estimate the flux term C. In view of the Young’s inequality, one
has

CSZE / /,35 Ma(S x) — vg(s,x))‘V(ug(s,x)—vg(s,x))‘zdsdx]
+C()E /RI/O ,Bg(us(S,x)—vs(S,x))|f(u5(s,x))—f(vg(s,x))|2dsdx]
=C1 + (.

In view of the Lipschitz continuity of f and (2.3), we see that

BY (1e (5. %) — ve (5. 0)) | f (e (5, ) — f (e, )|

= C|u8(s’ X) = ve (s, x)|1{0<|ug(s,x)7vg(s,x)|<é}

< Clug(s, x) — ve(s, x)| € L' (2 x (0, T) x RY).
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On the other hand, |u¢(s, x) — ve(s, x)|1 T PRm—

almost every (#, x) and almost surely. Thus by dominated convergence theorem, we
conclude that C; < (&) where ¢(§) — 0 as & — 0. In view of the assumption A.5,
one has

<$} —> Oas & — O for

t
D< KIE[/d/ B (e 5. 2) = v (s, 0)) e (5, ) = ves, )P ds dx]
R4 JO

A similar calculation reveals that D < &(£) where ¢(§) — Oas & — 0.
Now we move ontoestimate G. Leta = u. (s, x)—vg (s, x) and b = n(uy(s, x); 2)—
n(ve (s, x); z). Then we have, in view of assumption A.6,

t 1
QZE[/Rd/o /E/O (1—A)bzﬂg(a+Ab)dkm(dz)dsdx]

t 1
S]E[/ /// (1—A)azﬂg(a+Ab)h2(z)dkm(dz)dsdx]. (3.6)
ReJo JEJO

Note that 8” is nonnegative and symmetric around zero. Thus, we can assume without
loss of generality that a > 0. Then, by assumption A.6,

g (s, X) — ve(s, x) + Ab > (1 — 1) (ue (s, x) — vy (s, x))
for A € [0, 1]. In other words
0<a<(1—=29"a+rb). (3.7)

We combine (3.6) and (3.7) to obtain

t 1
G < C(A*)E[/Rd/o /E/O (1= 2@+ b)Y (a + % b) (@) dim(dz) ds dx |.

In view of (2.3), and the assumption on 1 that (0, z) = 0 for all z € E, we see that,
for each A € [0, 1]

(@ +Ab)?BL(a + Ab) < la + Ab|Lj0<|asab|<¢)
<la+rb| € L'(Q x (0, T) x RY),

for m(dz)-almost every z € E. Again, |a + Ab|1ljg<jatibj<cy —> 0 asé — 0
for almost every (¢, x) and almost surely. Since h(z) € L*(E, m), by dominated
convergence theorem, we conclude that G — 0 as § — 0.
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Combining all the above estimates, we arrive at

E[/Rd B (ug(t,x) — vg(t,x)) dx]
e . 2
< _EE[/RLI/O ,65 (ug(s,x) — vg(s,x))‘V(ug(s,x) — vg(s,x))‘ ds dx]
+e@+E[ [ pelunt) —vo0n) d]

<e@+E[ [ pelunt) = vo() d . (68)

Keeping ¢ > 0 fixed, we pass to the limit £ — 0 in (3.8) and the resulting expressions
reads as

E[/Rd ‘ug(t,x) — vg(t,x)’dx] < E[/]Rd |u0(x) — vo(x)|dx].

Assume that vo(x) = ug(x + ¢) for fixed ¢ € R?. Then, since o and 1 do not
depend on x explicitly, by uniqueness of the weak solution, one can conclude that
ve(t, x) = ugs(t, x + ¢) and hence

]E/ jue(t, ) —ve e, )| SE/ ot~ 20l =C,
Re lc] Rd el

independent of ¢, if ug € B V(Rd ). This implies that, for any ¢t > 0, since v. (¢, x) =
ug(t, x 4+ c)

Sup BT Ve (ate ()] = B[ T V(o) |- (3.9)
e>0
This completes the proof. O

In view of the well-posedness results from [4,10, 18], one can conclude that, under
the assumptions A.1-A.6, the family {u. (¢, x)}.~0 converges to the Young measure
valued narrow limit process u(t, x, ¢), called generalized entropy solution which is
indeed the unique entropy solution u(z, x) of the underlying problem (1.1). Now, our
aim is to show that u (¢, x) is actually a spatial BV solution of (1.1) provided the initial
function ug lies in L2 N BV (RY). Since u; converges to u weakly in L2(2x(0,T) x
R?), for any R > 0, by convexity arguments,

E|:/ |u|13Rd(0’R)dxdt:| gliminfE[/ |M€|13Rd(O,R)dthj| <M,
Ir € Mr

@ Springer



Stoch PDE: Anal Comp (2017) 5:145-191 161

thanks to (7.6) and u € L'(Q x (0, T) x R%). In view of the lower semi-continuity
property of T'V, and Fatou’s lemma, we have, for a.e. t > 0,

E[T Vi ()] = liminf E[ 7V, (e (0))] < E[TVatuo) ]

where the last inequality follows from Theorem 3.1. Thus, u(¢, x) is a function of
bounded variation in spatial variable. In other words, we have existence of BV entropy
solution for the problem (1.1) given by the following theorem.

Theorem 3.2 (BV entropy solution) Suppose that the assumptions A.1-A.6 hold.
Then there exists a constant C > 0, and an unique entropy solution of (1.1) such that
forae. t >0

B[ lutt, gy | = CE[ ol gy e |

Remark 3.2 Note that VA (u,) converges to VA (u) weakly in L2(2 x (0, T) x R?).
Moreover,

E[/ |VA(us>|}=E[/ A’<u8)|ws|]s||A’||ooE[/ |w5|}5c
Ir Ir M7

thanks to the estimate of the total variation of u,. Then, an argument similar to the
above one concerning the sequence u; yields VA(u) € L'(Q x (0, T) x R%).

4 Proof of the main theorem

It is worth mentioning that, the average L'-contraction principle (cf. [4,10]) gives the
continuous dependence on the initial data in stochastic balance laws of the type (1.1).
However, we intend to establish continuous dependence also on the nonlinearities,
i.e., on the flux functions and the noise coefficients. To achieve that, we proceed as
follows: For ¢ > 0, let v, be a weak solution to the problem

dve(s,y) — AB(ve(s,y)) ds — divyg(ve(s, y)) ds
= 5 (0 (s, Y)AW () + / (0e (s, v): 2) N(dz, ds)
E

+ SAyyvs(Sa »),
v:(0, y) = vo(y) 4.1

and ug(t, x) be a weak solution to the viscous problem (1.3) with small positive
parameter 6 which is different from ¢. In view of the Theorem 3.2, we see that v, (s, y)
converges to the unique BV entropy solution v (s, y) of (2.2) with initial data vo(y) and
ug(t, x) converges to u(t, x) which is the unique BV entropy solution to the problem
(1.1). Our aim is to derive expected value of the L'-norm of u — v and the proof is done
by adapting the method of “doubling of variables” to the stochastic case. In [9, 14], the

@ Springer



162 Stoch PDE: Anal Comp (2017) 5:145-191

authors directly compare one entropy solution u (¢, x) to the viscous solutions v, (s, y)
and then pass to the limit in a Kato’s inequality. Due to lack of regularity of the solution
(see e.g. estimation of the term .4;), here we compare one weak solution ug (¢, x) to
another weak solution v (s, y) and then pass to the limits as viscous parameters tend to
zero. This approach is somewhat different from the deterministic approach, where one
can directly compare two entropy solutions. For deterministic continuous dependence
theory consult [11,15,16,24] and references therein.

Note that, one can show that v, € H'! (Rd). However, to prove such Kato inequal-
ity (see [4,8]), one typically requires higher regularity of v,. Therefore, we need to
regularize v, by convolution. Let {7, } be a sequence of mollifier in R?. Since v, is a
viscous solution to the problem (4.1), one gets that v, * 7, is a solution to the problem

d(ve * 7)) — A(B(ve) * T) ds = divy (g(ve) * T) dss + (0 (ve) * ) dW (s)
+ / (7(ve: 2) * T )N (dz. ds)
E

+ A xTc(s, y))ds, s>0, yeR (4.2)

Note that, A(v, * ) € L*(Q x I17), for fixed ¢ > 0.

To proceed further, let p and o be the standard mollifiers on R and R¥ respec-
tively such that supp (p) C [—1, 0) and supp (0) = B1(0). For § > 0 and §9p > O,
let ps,(r) = %’0(;—0) and gs(x) = S%Q(%‘). Let ¢ € Cg’z([O, o0) x R?) be any
nonnegative test function. For two positive constants 8, §y, we define the test function

©5.80(t, X, 5, y) = pso (t = $)Qs(x — Y)Y (s, ). 4.3)

Furthermore, let ¢ be the standard symmetric nonnegative mollifier on R with
support in [—1, 1] and ¢ (r) = %g(%) for I > 0. We write down the [t6-Lévy
fomula for weak solution ug(, x) against the convex entropy flux triple (B¢ (- —
k), fPe( k), AP (-, k), multiply by ¢;(ve * T (s, y) —k) for k € R, and then integrate
with respect to s, y and k. The result is, keeping in mind that 8 = B¢

OB[ [ [ 5ot = 01900, 30) P50, 5,5. 90510 5 75, ) = ) ke dx dr dy s
T

+ E[/nz /Rﬂ” (o (2, %) — k) IV G g (2, X)) 205,50 (1, X, 5, ¥) 1 (Ve * T (s, ¥) — k) dke dx dt dy ds]
T

IA

o] / / / B0 () ~ K91 3,0, %, 5, )51 (ve % 55, ) — ) dk v dyds |

Jnr Jre Jr

+ E[/ / Blug(t, x) — k)rps 5, (L, x, 5, ¥) 51 (Ve * T (s, y) — k) dk dx dt dy ds]
n Jr

+E[ D 8i g (t, )" (g (t, x) = K)gs 59 (£, X, 8, ¥)G1 (Ve * T (5, ) — k) dk dx dp; (1) dy dS}
Jnz JR

i=1

e
3B [ [ 0B .0 — g 13,5, 9051000 505, 9) ~ Kok d e dy ds]
Jmz Jr

B[ [ 009 15, 00 5 59) — )k dy s
s
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+E[/2 /Aﬂ(ue(z,x),k)Am,,;o(z,x,s, V)61 (e * T s, y)—k)dkdxdtdyds]
n Jr
O] [ Bt Va0 .3) - Tagss 45,3051 00 4 5. 3) — ) dkdx drdy s
n Jr
1
+E[/ /// g (t, x); 2B (uo (t, x) + 2o (t, x); 2) — k) s 5, (£, x. 5. y)
nz JEJRJO
X ¢1(ve * Te (5, y) — k) dhdk N (dz, dt) dx dy ds}

1
HE[/ ///(lfA)nz(ue(t,x);z)ﬂ”(ue(t,x)+An(u9(t,x);z)fk)wa,ao(t,x,s,y)
nz JRJEJo

X 1 (Ve * T (s, y) —k)drm(dz) dx dt dy ds}

e, lor+lho=<h+h+DL+1s+1s+1s+ 17+ 13+ Io. 4.4)

Again we apply It6 formula to (4.2) and multiply with the test function ¢5 s, and
G (up(t, x) — k). Taking expectation and integrating with respect to k, ¢t and x, the
resulting inequality reads, for 8 = f¢

] / / B (v % 75, ¥) = IV (e # 7)Pps g1 (a0, %) — K) dk dxe dr dy dis |
nz Jr
n E[/ i / B (e 575, ¥) = IOV(B(e) % 70) - V(e 503,30 (13,5, 3)G1 (g (1, ) — k) dkdx d dy ds |
2 JrR
= / / / B %760, )~ Kigi . x,0. Y)s1(ug 0, ) — k) dk dx dy di |
My JR4 JR
+ ]E[ Bve T (5. y) — K)dys.50 61 (o (t. x) — k) dk dy ds dx dt]
n Jr
+E[ Y (B (00) # (5, YD (Ve % T (5, 3) = B0 (1, ., 5 )61 (o (1, ) = K) dy dk d ) dx
n Jr

jz1

1 ~ "
+ EE[Z/Hz /ﬂ@(g,(ug)*rk(s,ynzﬁ (e %75, ) = K)ps.30 (0, %, 5, V)i (ua e, x) = k) dy dk ds dx di |
jz170T

—]E[/2 / B (e # T (5. ) — K)V(B(vg) % Te) Vs g (1. X, 5. Y)61 (g (2, ) — k) dkdxdtdyds]
2 Jr
- E[/HZ /]R B (ve % T (5, y) — k) (V) * T (5, ) Vy@s.s, (t, X, 5, ¥)G1(ug (1, x) — k) dk dx dt dy dS]
_ E[/nz /Rﬂ,/(vg £ T (5, 9) = K@) # TV, (e % 7,50 (1 X, 5, V)61 (o 1, x) — k) dk dx dir dy ds |
— s]E[/ / B'(ve x T (5, y) — k) Vy (Ve * T) - Vy@s.5,(t, x, 5, y)g1(ua(t, x) — k) dk dy ds dx dt]

nz Jr i

1

+E[/, / / / (T(We: 2) % T (5, 1)) BE (ve * T (5, ¥) + A(T(ve; 2) * T (5, ¥)) — k)

7 JEJRJO

X 05,80 (1, %, 5. )61 (g (1, x) — k) dA dk N(dz, ds) dy dx dz]

1
+JE[/ ///(1—M(ﬁ(vg;mm(ny))zﬂg’(ve*w,y>+x<ﬁ(vg;z>*rk<s,y>)—k)
nz JRJE Jo

X @5,50(t, x, 8, )51 (up(t, x) — k) drm(dz) dk dy ds dx dt]

ie, Joit+Jo2=h+ht+I3+Js+ s+ I+ J7+ Js+ Jo + Jio. 4.5)
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Our aim is to add inequalities (4.4) and (4.5), and pass to the limits with respect to the
various parameters involved. We do this by claiming a series of lemmas and proofs of
these lemmas follow from [4,8] modulo cosmetic changes.

Lemma 4.1 Let é(x) = f(f /B’ (r) dr. Then the following holds

lim lim lim (102+Joz —E / / 'BE ug(t, x) — ve(t, y))

[—-0k—038p—0

x (19Gwatt, ) + VG (et P

XU (t, V)os(x — ) dxdydi .

Lemma 4.2 It holds that J; = 0 and

lim lim lim (1, + J;) = E[/Rd Be (1o (x) — vo(¥) ¥ (0, y)os(x — y) dxdy].

[—-0k—>068—0

it timy (12 -+ 2) =B [ [ B (unto3) =00, 0) 2005, ) 0306 = ) dy dx ds ]
Mr

[—-0k—038)—0

Lemma 4.3 We have J3 = 0 = Jy and the following hold:

lim lim lim ((13 + J3) + (J4 + 14))

[—-0k—>08—0

=-E Z/ /dﬁé’(ue@,x)—vg(t,y))(gk(ue(r,x»

k>1
— (e (6, Y)Y (1, )os(x — y) dx dy dr],

and

lim lim lim (18 + 1o+ Jog + Jlo)

1—-0k—038p—0
:E[./HT /Rd/E/O (1= 2B (a1, %) = v (0. 3) + 2 (o 1, X); 2) = (w0, )3 )

X (1(uo 6, %): 2) = (e (4, )3 ) 9 1, V)os(x = y) drm(dz) dx dy dr

Lemma 4.4 The following hold

lim lim lim (]6+J7 = —]E / / vg(l y), ug(t, x)) Vyly (t, y)os(x —y)]dxdydl]
Ir d

[—-0k—068—0

lim lim lim /s = —IE / / fﬂé ug(t,x), ve (2, y)) Vel (t, y)os(x — y)ldx dy dt]
My JRY

1-0k—>038)—0

c
lim lim lim (I + Jg) < g{g E[|vo|BV(Rd)] +6E[|uo\BV(Rz/)]}

1-0k—>038)—0
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Lemma 4.5 Let 8 = B¢ asprescribedin Sect. 2. Let BP(a,b) = fba B (r—b)B'(r) dr.
Then, we have the following:

lim lim lim /g = / / Aﬁ ug(t x), ve(t, y)) e, y)os(x —y)]dxdydt]
My

[—0k—08—0

lim lim lim Js = / / Bﬁ vg(t y), ugp(t, x))A [ (2, y)os(x —y)]dxdydt]
[y

[—0k—08,—0

Finally, note that Iy 1, Jo,1 are non-negative quantities. Now we are in a position
to add the inequalities (4.4) and (4.5), and pass to the limits lim;_, ¢ lim,_, ¢ limg, ..
Thanks to Lemmas 4.1-4.4 and Lemma 4.5, we arrive at

0<- E[/n [ 80,3 = .0, ) (19 G o0, 0
+ VG et YD) ¥ (r, yas(r = y) dx dy di |

B[ [ [ AP a0 000 0) A0 st~ pldrdy di
- Jy Rd

B[ [ B 00 0) A0 st — pldrdy di
My JRE

+E:A /]Rd Vy : {gﬁf (U‘g(l, y)v M@(tv-x)) - f'BE (M@(l,x), vS(ts )’))}
X Y (t, y)os(x — y)dxdy dt]
B[ [ ] 0. 0.0 9) - Vo estc = ) dxdy ]
My JRA
+ %E[; /| T [ B 0,30 = a0, (o 0,50) = B0, )
X U1, )os(x — y) dx dydi
B[ [ [ Bt~ uals. 5080 5. es(x = ) dy dxds]
- JIr Rd
B[ [ Beunt) = w0 vests — ) dxdy]

+E/ / //(1—)»)/9; ug(t, x) — ve(t, y)
Iy R4

M(n(us (1, %): 2) = (e (1, ): 2)))

X (n(ug(t, x); 2) — (v (2, ¥): z))ZW(t, y)os(x —y)drim(dz)dxdy dt]

c
+ 3[8 E[|UO|BV(]R“’)] + QE[|“0|BV(R“’>”
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=A1+ A+ Az + Ay + As + Ag + A7 + Ag + Ao

+ %{8E[IUO|BV(Rd)] +0E[|MO|BV(Rd)]}' (4.6)

Let us first consider .A;. Note that fgr anya,b € R, —(a2 + b2) < —2ab. Thus, in
view of Lipschitz property of G and G and the fact that ug (¢, ), ve (¢, -) € H'(R?),
we see that

Al =— IE[/n /Rd BE (o (t, x) — ve(t, y))(\VG(ug(t, )P+ VG (ve(t, y))|2)
T
Xt es(x = y) dx dy i
=- E[/ / BE (ug (1, x) — ve (2, y))(A/(ug(t,x))|Vug(t, x)?
My JRY

+ B/, )Vt )

X (&, Vo5 (v — y)dxdy i

<—2E| / / B (o 0, 2) = ve (e, ) (VA o (1 )V B (e (6 ) Vatto (1, )V, 061, 1))
My JRE

X Y (t, v)os(x — y)dx dy dt].
Regarding the term A;, we have

Ar = IE[/ / AP (ug (1, %), e (1, 7)) Ac[¥ (1, y)os (x — y)]dx dy dt}
My JRY
=B [ [ B0~ 0i ) A 1,001 090 y)esx = ] dndyar]
Mnr JRd
=g / / Bl (wa (e, x) = ve (6, YA (o (1, 2)Vatto (1, ¥)V [ 0, Voo (x — V)] dx dy dr]
JM7 . R4
= /n /R B (1, 3) = v (1, YA o (1, 0) Vit (1,500 (6 — )V, 0, ) dvdy di |
- E[/ / B o (1, ) = ve(t, YDA g (1, 0) Vo (1, )y 0 (8, IV 0 Yoy (v = )] dx dy di |
My JRE

B[ B0 = e A 0.0 Va1, 50055 = 900 ) dxdy i
My JRY

= A1 + Az
Similarly, for the term A3, we have
s =E[ [ [ B (unte ) w01, 0) 8,000 yesx = yldrdy ]
My JRY
——B[ [ [ B0u03) ~ ot 0B 0 ) Vo1, V0 st — ] dxdyr]
nr JR?
— B[ [ [ B =t ) B e, 3V 0900 et~ 1 dy di]
My Jrd

B[ [ B0 o) B 0 ) Wy 0¥y 0, 05t = ) dxdy ]
T
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B[ [ [ B 0,3) = 00 B 00 ) ¥y 1,90 Vst 1 0L . s = )l dy ]
JTr

B[ [ [ B3 = 50 B 00,500, 3)V 0 s~ ) dxdy ]
,
=Az 1+ Az,

Thus,

A+ Axi + Az
= —2E] /n /R B (ot x) = ve (0, )) (VA o (1 )V B et 3) Vitto (1, 1) V0 (1, 3) )

X Ut Vos(x = y) dx dydi

+E| /H /R B a0 %) = vt YDA o 1, ) Vot 1, )9y DI 1, ¥)s(x = W] dxdy di

B[ [ B = a0t 0B 01, )T 000, )t 4 D )03 = ) dy ]

—E| /H /}R B (ot x) = 0o (1) [VA g 01.)) = /B e 6. )] Vatto (1, 0)Vy e (1, )
oo

X (1, Vos (v — ) dxdydi ],

if B¢ is chosen even. This implies that

A+ Az + Az

ug (t,x)
- E[/H /R VX[ / B (1 = velt, ) [VA' (@) — VB (v 1, y))]zdr]

e (1,y)

X Vyue(t, )V (0 Vs (x — y) dx dydr

ug (1, x)
| / / [ / ﬁg’(r—vg(t,y))[JA/m—\/B’(w,y))]er]
HT Rd v

e (1,y)

X Vyve(t, y)Vyos(x — Y)W (t, y)dx dydt

]
bl L[ e st ]
T Vell,y
)

X Vyve(t, y)Vios(x — )Y (t, y) dx dy dt

ug (t,x)
HE[/ / U Bi(r —ve(t.y) [\/B/(f)—\/B/(vs(t,)’))]zdr]
My JRA v

e (1,y)

X Ve, ) Vs (x = Y (1, y) dx dy di |

< C(A" = B'llc +8)

xE[/ / 1B (0 (1, ) = vet, D)IIVve 6, VI IVr0s (& = WY (e, y) dx dydr .
Iy JRE
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where we have used that |/x — /y| < +/2]x — y[ and the Lipschitz continuity of B'.
Thus,

A+ Ay i+ A3 <C(|A" = B'lloo + §)
E[/ (2, ')”oolvyva(t»y)l/ [Vios(x — y)|dx dydf]
My Rd

A~ Bl +8) [T
<c Lo /0||w<r,~)||Lw(Rd)dt,

thanks to the uniform BV estimate of v,.
Now, since

Axn+ Az
=B [ [ B — v ) A w0 sua 100053~ 1)V, 00,y dxdy i
Mz JRY

= / / B (e, 3) = g (1, ))B' (e, Y)IVy0i 1 )V, (1, y)as(x — y) dxdy i |,
My JRA

we have proved the following lemma.

Lemma 4.6
A/ _ B/ 00 T
A+ Ax + As SC(” 8” +€)/0 IV, )l oo ray dt
B[ [ ] Bttt = v )T Awo e x)
Iy JR4
— VyB(ve (2, y))]os(x — y)Vyr(z, y)dx dy dt]~ 4.7

Let us consider the term A4. We first rewrite A4 as

Ay = E[/n /Rd vy - Igﬂs (velt, y), ug(t, X)) — £5 (ug (1, x), v (2, y))]lﬁ(t, yos(x —y)dxdy dt}

¥(s, y)os(x — y)dydx ds].

- _E[/n, /}R Ve (s, ) - 8 (£ 0, v) — 8 (0, 0)

(u,v)=(ug (5,x),ve (5,y))

Therefore, to estimate Ay, it is required to estimate

O (fPu,v) — gP (v, u))‘ . Note that, by our choice of B = S,
(u,v)=(ug (s,x),v¢(s,y))
one has

9
‘5(fﬁé(u,v)—fﬁé(v,u))‘
= |- FOBLw -1 - F @B + / B —uf ) ds
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= (1’0 = /)i —v) - / Bl = f () ds

B ‘/ (Biw—v) = Bis = 0)) ") ds| = M6 NI/ looe (43)

Again, it is evident that, for any u € R

9
(e = e.w)| = [Be —n(f o - gw)| < 1f 0 - g ol
4.9)
Therefore, by (4.8) and (4.9), we obtain
9
() = @) | < Mgl N+ 17 @) — g @ @10)
v
Using uniform spatial BV bound and the estimate (4.10), we obtain
Lemma 4.7
T
Aa = B Iolgyign ) (M2 € 1 N+ 115 = lloc) | 1965, My .
- (4.11)

Next, regarding the term As, we have

Lemma 4.8

As = —E[ / / PP (e, 00, w60 ) - V0, Yoo (x — y) dx dydi .
My JRE
(4.12)

Regarding Ag, in view of the definition of the

5k(0’, 5) = sup M’
££0 €]

assumption A.5, and Remark 2.3, we see that

1 i : ~
Ao =B 3 [ B oo, = vete,30) e 1,60) = BeCwu 0, 30) 0 1 s(x = ) ddy ]
Jngr JRA

k=1

2
B[ [ [ (ontunt,) = Betwnr.00) B (ot ) = vt ) st = ) dxdy ]

k>1

2
B[ [ (@t o) = Boi ) B o) = 0,30 yhess = ) dy ]
T

k>1
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<3 &,57 IE/ / o (1, ) P B (1, ) = et )Y 0, Y)os(x — y) dedy i

k=1

28 [ [ peluntto = v ) et = y)dxdyar].
My R4

and, in view of the above inequality and ,3 r) < 7> we obtain

Lemma 4.9

Ag < ZE[/ / Be (ug (1, x) — ve(t, )W (1, y)os(x — y)dxdy dl]
My JRE
> &0, 5

k>1

+ T o ||¢(S, ')||L00(Rd) ds. (413)

Next we consider the term Ag. Since B¢ (r) < |r|, we obtain

s =B[ [ Bt = w0 nestx v dxdy]
R4 x R4

< E[/ |uo(x) — vo(W) [ (0, y)os(x — y) dx dy]. (4.14)
R4 xR

Let us focus on the term Ayg. For this, let us define
a:=ug(t,x) —ve(t,y), and b :=n(ug(t, x); 2) — N(e(t, ¥); 2).

We can now rewrite Ag in the following simplified form

1
—IE[/ ///(1—A)b2ﬁg’(a+xb)w(t,y)ga(x—y)dxm(dz)dxdydz]
ny Jrd JE Jo
1
ECE[/ ///(1—k)|n(u9(t,X):z)—'ﬁ(ue(t,X):z)|2ﬁé’(a+kb)1//(t,y)
n; Jrd JE Jo
X 0s(x — y)drm(dz)dxdy dt]

1
+CE[/ / //(1—A)|ﬁ<ue(z,x>;z>—ﬁ(vg(r,y>;z)|2ﬂg’(a+Ab)w<r,y>
My JRYJE JO

x 0s(x — y)drm(dz)dx dy dt]
=Ag 1 + Ag. (4.15)

Note that ,B (r) < ?, for any r € R. Thus, in view of the definition of

~ 2
DOy 7) = sup/ |"(”’Z)|ulf(”’Z)| m(dz),

ueRJE
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and the uniform moment estimate (2.1), we see that
c ~ 2
Ao = 7D DE[ o, PP, Y)os(x = y) dx dy di |
§ ny JRe

C T
<Spm.m / 195, Ml ooy . (4.16)
0
Next we move on to estimate the term Ag 5. Notice that, thanks to the assumption A.6,

o (t, x); 2) — N(vs (2, ¥); Z)|2ﬂ£(a + Ab) < |ug(t, x) — ve (2, y)|25é’(a + 1b)h2(2)
< a’B{(a+ 1b)h* (2). 4.17)

Therefore, we need to find a suitable upper bound on azﬂé’ (a + Ab). Here we follow
the similar argement as we have done in Sect. 3 (estimation of the term G). Since B”
is nonnegative and symmetric around zero, we can assume without loss of generality
that @ > 0. Thus, by assumption A.6, we have

bl < |nue(t,x); 2) — T(ug(t, x); 2)| + [Mug(t, x); ) — T(a(t, ¥); 2)|
< |nug(t, x); 2) — uo(t, x); )| + A*[ug(t, x) — ve(t, y)|
= |n(ua(t, x); 2) — Tug (. x); 2)| + A*a,

and hence
—2*a — [n(ug(t, x); 2) — (g (t, x); 2)| < —1bl.

Thus, for A € [0, 1], we see that (1 —A%)a — ’7](1/19(1‘, x); 2) —1n(ug(t, x); z)} <a-+Ab,
which gives

0=a= (-2 @+ab) + st 0: 2 = ot 0: 0} @18)

Making use of (4.18) in (4.17) along with Remark 2.3 and the fact that ,Bé/(r) < %,
we get

a’Bl(a+ rb)h*(2)

212 B )
- ﬁ{(“ + A0 + [n(ug (1, x): 2) — Nug (1, x): z)\z}ﬁ,E (a + Ab)
2h%(z) C B )
= m{Zﬂs (a+2b) + g|n(ue(t,x); 2) — Mg (t, x); 2)| }

Let us remark now that

B (a + Ab) =Bx (la + Ab|) < Bz (2lal + [n(ua(t, x); 2) — N(ua(t, x); 2))
<2B¢(a) + In(ug(t, x); 2) — T(ua(t, x); 2)|,
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to get:

Ago < CE[/H /Rd/E [ﬂg(ue(t,x) —ve(t, ) + 1o (t, x); 2) — Nug (1, x): 2)|
T

Inug(t, x); 2) — (g (1, x); )|
* E

< CIE[/ / Be (o (1, x) — ve (1, M) ¥ (1, y)os(x — y) dx dy dt]
Ir R4

+CE[/ / [/ |n<ue(z,x);z)—n(ue(r,x);z)|h(z)m(dz)]
ny Jre | JE lug (2, x)|

X Jug (1,01 (1, Vos(x = y) dx dy di]

]hz(z)w(t, vos(x — y)m(dz) dx dy dt]

(o

+7E|:/ / D(’% ﬁ)|u9(t,x)|21p(t, y)Q(S(x —y)dxdydt]
& ny Jrd

= C]E[/ / Be (o (t, x) = ve(t, y)) ¥ (2, y)os(x — y)dx dy dt]
Mr JR4
+C D(nﬁv’)JE[/ / lug (2, X)| ¥ (2, y)os(x —y)dxdydt]
My JRA

C T

+ PO [ 1 ey .

Thus,

Aoz <CE[ [ [ Belunte. ) = untr. )0, (s = ) dxdyar]
T

D "‘" T
+C(\/D(n,ﬁ')+$)/0' ||w(t, ')”LOO(Rd)dt. (419)

Thus, combining (4.16) and (4.19) in (4.15), we obtain the following bound:
Ao = CE[ [ [ B(un) = 000wt st = ) drdy ]
Ir

D , T
+ (VDo m + (’; ﬁ)) /O 19 (¢ )| oo ey it (4.20)

Finally, invoking the estimates (4.7), (4.11), (4.12), (4.13), (4.14) and (4.20) in (4.6)
we have

0<B[ [ [l = w0 |9 0. st~y dxdy]
R4 JRE
b [ [ Beluotn et ) st — ) dy dvar]
My JRY

+CE[/ / 'Bs(ue(t’x)_“s(t’Y))l/f(faY)Qs(x—y)dydxdt]
My JRd
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> &0, 5)? Do)
+c("ZIT &+ = & lloo + VD) + %)

T

X/o Nt )l Loo ey dt

/ / T
C(llA — Bl ~I—§)/
§ 0

C

+ [y (t, ~)||LOO(Rd)dr+§(e+9)

B[ [ [0 0 0) - 90 st - vy drdyr]

T
= / / Biluo (. x) = ve(t, Y)Va Ao (1, ))
My JRE

— VyB(ve(t, y))los(x — y)Vy ¥ (z, y)dx dy dt]. 4.21)
Note that {ug}g~0o converges in LlIZ)C(Rd, L?((0,T) x )) for any p € [1,2) to the
unique BV entropy solution u, {v,}¢~¢ converges in the same way to the unique BV
entropy solution v of (2.2) with initial data v and A(ug) and B(v.) converge weakly

in L2(Q x (0, T), H'(R?)). Thus, by passing to the limit as &, 6 — 0 in (4.21), we
obtain

0< E[/ / |uo(x) — vo(M) ¥ (0. y)os(x — y)dx dy]
Rd JRA
+ E[/ / Be (ut, x) —v(t, )Y (1, y)os(x — y)dydx dt]
My JRE

+CE[ [ [ Bt v = ot ) wie voste = vy dydvar]

E(0,5)? ., D, 7 A" — B'|lso
+c( (agcr) E I = gl /DT + (r; n)+(|| 3” +«§))

T
x/o (6, | ey d

—E[/ / FP (. x), v, ) - Yy, )’)Qa(x—)))dxdydt]
ny Jrd
—E[/ / Bi (u(t, x) — v(t, )V Au(t, x)) — VyB(u(t, y))]
My JRY
X 03(x = VVyUr(t.y) dx dydi . (4.22)
where £(0,5)% == > & (0,5)>%.
k=1

To proceed further, we make a special choice for the function v (¢, x). To this end,
for each & > 0 and fixed ¢ > 0, we define
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1, ifs <t,
V()= 11-3t  if r<s<r+4h,
0, ifs >t 4 h.

Furthermore, let ¢ € CLZ, (R%) be any nonnegative test function.

Clearly, (4.22) holds with ¥ (s, x) = 1//}’! (s)¢ (x). Let T be the set all points ¢ in [0, 00)
such that ¢ is a right Lebesgue point of

B(t) = E[/Rd /Rd Be (u(r, x) —v(t, y)) ¢ (y)os(x — y)dx dy]-

Clearly, ']I‘U has zero Lebesgue measure. Fix ¢ € T. Thus, we have, from (4.22)

1 [ith
i [EL [ el = v )cmes = vy dvay] ds

= E[/ 1o (x) — vo(M) [ (os(x — y) dx dy]
RZd
t+h
+ CE[/ / Be (u(s, x) = v(s, 1)) E Wy ()es (x — y) dx dy ds]
0 de

E(0,5)? . — D(n, A — B'|| 0o
+C( (“;) FE I = &lloo + VD ) + (’;m+(” 8” +5))

t+h
X Nl /70 Wl (s)ds

t+h
B[ [ 7 006, ) - VeI Gesx — v drdy s
0o Jru

t+h
- ]E[/ / Bi (u(s, x) — v(s, )[VxA(u(s, x)) = VyB(v(s, y))]
0 R2d

x 05(x — Y)VZ()WL(s) dx dy ds].

Passing to the limit as 4 — 0, we obtain

[ [, peluttn — v )eests — v dxay]
R2d
< 5[ [ ot~ w0lemest — »dx dy]
R2d
+ CE[/ / B (u(s, x) — (s, y));(y)g(;(x —y)dxdy ds]
0 R2d

£(0,5)? . — D, A" — B[00
+C( (";) + &+ 11 = & lloe + /DD + (’;ﬁ)ﬂ” i +5))

X S oo (ratyt

t
—E[// SP (s, ), 065, ) - VE@s(x — ) dx dy ds |
0 RZd
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t
—E[// Be (u(s, x) — v(s, y)[VxAu(s, x))
0 R2d

— V, B(o(s, y)los(x = VEG) dx dyds].

By then sending ¢ to 1ra (thanks to Remark 3.2 for the last term), we have

E[/RM Be (u(t, x) — v(t, y))os(x — y)dx dy]
=5] [ o)~ wooleste ~varar]

£ 2 A" — B'||oo +
+c( ("E") FEFNS = &l + VD) + (’” 12 =2 é)t

+ CE[/O /RM Bz (u(s, x) — v(s, y))os(x — y)dx dyds],

and

E[/de B (u(t, x) —v(t, y))os(x — y)dx dy]

< eC’]E[/ |uo(x) — vo(y)|os(x — y) dx dY]
R2d

+Cecl(&ffﬁ)z = Do ||A’—B’||oo+é)t

+ &+ 11f" = &'lloc + VD, ) +
£ EFIF =gl (. m) £ 3

by Gronwall argument. Let us consider now a bounded by 1 weight-function ® €
L' (R?), non negative (for example negative exponentials of |x|). Then, by using
|r| < Mi& + B (r), we have

IE[/Rd /Rd |u(r, x) = v(t, y)|os(x — y)P(x) dx dy] — CE(| D 11 ga

|A" = Bl +8),
8

2
+CeCf(5(";) +E 4 11f — &lloo + /DO M) + (g’ﬁ))r- (4.23)

seC’E /Rl/ |uo(x)—vo(y)|Qa(x—y)dxdy]+C6Ct(|

Again, in view of BV bound of the entropy solutions u(z, x) and v(¢, y), we have

E[/Rd vt y) —u, y)!dy]
—E[/ / |U(ts)’)—u(f7x)|ga(x—y)dxdy]
R? JRd
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HE[/ / |“(t’x)_“(I»Y)}Qa(x—y)dxdy]
R4 JRY

: E[/Rd /Rd ot ) = ut, 0)les(x - y) dx dy] + 3E[|M0|BV(Rd):|v (4.24)
and
E[/ / |uo(x) — vo(y)|os(x — y) dx dy]
re JRe
< E[/Rd |t (x) — vo ()| dx] + 5]E[|UO|BV(Rd)]. (4.25)

Thus, thanks to (4.24) and (4.25), we obtain from (4.23)

]E[/ ut, %) = v, 0| @) dx | =< eC’E[/ o) = vo(0)| dx] + C (€ +9)
R4 R4

I pt
+Cec’(”A B(S”oo +8),

~ 2 —~
+ CeC’(‘S("’T") FEA NS = ¢l + /DO ) + D(’;’ ”))r.

(4.26)

By choosing & = max IE(U, ), D, ﬁ)]ﬁ in (4.26), we arrive at

E[/Rd Jutt, %) = 0(2, )| ® (o) dx ]
< eC'E[/ o) = vo(x)| dx |
R4
+CeC'(max{5(U, 5),,/1)@,,@]%(1 +0+8+11f —g/lloot)
Ct
(||A’—B’||oot+max|8(a, 3),‘/D(n,7,)]z r) (4.27)

8
< eCtE[/ |u0(x) — vo(x)| dx]
Rd
+ CTeC’(maX [5(0, a), VD(n,ﬁ)]x/;+8 + 11 f = g/”oot)

Ct
+ CT; (IIA/ — B'[|oot + max [5((7, 0),vD(n, ’ﬁ)]t). (4.28)

+

Now we simply choose 8> = max {I|A’ — B0, E(0,0), /D(1, n)}t in (4.28) and
conclude that fora.e. t > 0,
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E[/ ‘u(t,x) — v(t,x)|<I>(x) dx]
Rd
< Crec’[E[/ |uo(x) — vo(x)|dx]
R4

+ max [e(a, ), m]m I1f" = g'lloot

+max (VA= B, VE@.3), #D(n,ﬁ)}d?],

for some constant C7 depending on T, |uo|gy . V0l gy ray: IIf Il I lloos
|®]l;1 and || B'||so- This completes the proof.

5 Proof of the main corollary

It is already known (cf. [4,10]) that the vanishing viscosity solutions u. (¢, x) of the
problem (1.3) converge (in an appropriate sense) to the unique entropy solution u (¢, x)
of the stochastic conservation law (1.1). However, the nature of such convergence
described by a rate of convergence is not available. As a by product of the Main
Theorem, we explicitly obtain the rate of convergence of vanishing viscosity solutions
to the unique BV entropy solution of the underlying problem (1.1).

For ¢ > 0, let u, be a weak solution to the problem (4.1) with data (A, f, o, n, ug)
and ug be a weak solution to the viscous problem (1.3) with small positive parameter
6 which is different from . A similar arguments as in the proof of the Main Theorem
yields, thanks to (4.21),

0<8[ [ [ w0 ~ om0 nest = »dx dy]
RrRd JRA

+E[/ /ﬁg(uea,x)—u£<r,y>)[a,w<t,y)+cw<r,y)]@a(x—y)dydxdt]
iy Jre

T
+CE [l
=
C
F I sy + S e+ 0)
—E[/ / fﬂg(ue(t,x),ug(t,y))-V;W(t,y)ga(x—y)dxdydt]
Mz JR4
5[ [ [ Bt~ woniv A, 0)
My JR4

— V, Alwe(t, Y)les(x = IV, y) dxdyai]. (5.1)

Let the family {ug (s, x)}o~0 converges to the unique entropy solution u(s, x) as
6 — 0. Thus, passing to the limit as & — 0 in (5.1), we have
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0 EE[/ / o) = () [0, y)es(x — y) dx dy]
Rd JRd

+ IE[/H /Rd Be (u(t, x) — ug(t, y))[8;1ﬁ(t, v) + Cy(t, y)]os(x — y)dydx dt]
T
+ CE/ 0 ¥ (2, ')||L00(]Rd) dt
=
C
I e +

B[ [ [P ) - 0 st — ) dxdy ]
Iy JRE

+C

—E[/ / Bi o (t, x) — ue(t, Y[V Ault, x))
Ir R4

= Vy Aot los(x = IV, y) dxdydi]. (5:2)

As before, we use (s, x) = w{l(s)g(x) where 1//}’, (s) and ¢(x) are described
previously and then pass to the limit as # — 0. Again, sending { — 1a, the resulting
expression reads as

]E[/de Be (u(t, x) — us(t, y))os(x — y)dy dx]
t
< /0 E[/de Be (u(s, x) — ug(s, y))os(x — y)dy dx] ds
&

C
+]E[/ / |”0(x)_“0(y)|98(x—y)dxdy]+C$t+C—+—8_
Rd JRd s 3

and

]E[/de B (u(t, x) — ug(t, y))gg(x —y)dy dx]

C
< eC’(E[/Rd /Rd \uo(x) — uo(y)|Q5(x —y)dx dy] + Cét + C% + Tg)

(5.3)

And finally, passing to the limit with respect to £ yields

B [ (.0~ e, 0 fostx - y)dy ]
R2d

C
< eC’(E[/Rd /R [uo() ~ woestx = xdy] +=5°). 54
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Again, since u. (¢, y) and u(¢, x) satisfy spatial BV bound, bounded by the BV norm
of ug(-), we obtain

E[/]Rd lue (£, x) — u(t, x)| dx] < CeC (5 + g) . (5.5)

Finally, choosing the optimal value of § in (5.5) yields: for a.e. t > 0,

1

]E[nug(;, ) —u, .)||L1(Rd)] < CeCle1,

where C > 0is a constant depending only on [uo| gy gd). | /" llcos |/ lloc>and | A’ oo
This completes the proof.

6 Fractional BV estimates

In this section, we consider a more general class of stochastic balance laws driven by
Lévy noise of the type

du(t, x) — divy f(u(t,x))dt — Ay A(u(t, x))dt
=0, x)dW@) + [pn(x, u, x); ) Nz, dr), (1,x) €Ty,
u(0, x) = uo(x), x e RY,
6.1)
Here we consider the map o (1) : H — L2(R%), for any u € L*(R%) as

ouer = gk(u(-); gk € CRY x R)

Observe that, noise coefficients o (1) and n(x, u; z) depend explicitly on the spa-
tial position x. Moreover, we assume that o (1), and n(x, u; z) satisfy the following
assumptions:

(B.1) There exists a positive constant K| > 0 such that

2
> leetrw = g, 0P = Ki(1x = P+ = oP),
k>1

forall u,v e R; x,y € RY.

Moreover, we assume that gx(x,0) = 0, for all x € R4 and forall k > 1. As a
consequence,

G (x. &) = > la(x. ) < Kil&.

k>1
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(B.2) There exist positive constants K» > 0, A* € (0, 1) and h(z) € L%(E, m) with
0 < h(z) < 1 such that

n(x,u;2) —n(y,v; 2)| < W |u —v| + K2|x — yDh(z2),
forallu,veR; ze€E; x,yeRd.

Moreover, we assume that n(x,0;z) = 0, for all x € RY and z € E. In
particular, this implies that

LU, < Afulh(z), d <
[n(x,u; )| < A% |ulh(z), an |u|_1—o¢k*

lu +an(x, u; 2)[, Yo € [0, 1].

(B.3) There exists a non-negative function g(x) € L®R?) N L2(RY) such that
InCx, u; 2)| < g(x)(1 + [u))h(z), forall (x,u,z) e RY x R x E.

(B.4) A: R — Ris anon-decreasing Lipschitz continuous function with A(0) = 0.
Moreover, t —> /A’(¢) has a modulus of continuity w4 such that “’A—g) — 0
asr — 0. .

Clearly, our continuous dependence estimate is not applicable for problems of type
(6.1) due to the non-availability of BV estimate for the solution of (6.1). We refer to
[14, Section 2] for a discussion on this point in case of diffusion driven balance laws.
However, it is possible to obtain a fractional BV estimate. To that context, drawing
primary motivation from the discussions in [14], we intend to show that a uniform
fractional BV estimate can be obtained for the solution of the regularized stochastic
parabolic problem given by

dug(t, x) — divy f(ue(t, x)) dt — AcAus(t, x)) dt

=0 (ug(t, x))dW(t) + / n(x, ug(t, x); z)ﬁ(dz, dt) + eA u(t, x)dt (6.2)
E

Regarding Eq. (6.2), we mention that existence and regularity of the solution to the
problem (6.2) has been studied in [4, 10]. We start with a deterministic lemma, related
to the estimation of the modulus of continuity of a given integrable function, and
also an useful link between Sobolev and Besov spaces. In fact, we have the following
lemma, a proof of which can be found in [14, Lemma 2].

Lemma 6.1 Let h : RY — R be a given integrable function, 0 < ¢ € CSO(R‘Z)

and { Js}s~0 be a sequence of symmetric mollifiers, i.e., Js(x) = 8%]('3‘—‘), 0<Je
CXR), supp(J) C [-1,1], J(—=) = J() andf J = 1. Then
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(a) Forr,s € (0, 1) withr < s, there exists a finite constant C1 = C1(J, d, r, s) such
that

/ / |h(x +2) — h(x — 2)|J5(2)8 (x) dx dz
R JRY

<C168 sup|z|”* /d |h(x +2) —h(x — 2)|¢(x) dx. (6.3)
R

|z]<é

(b) Forr,s € (0, 1) withr < s, there exists a finite constant Co = C2(J, d, 1, s) such
that

sup/ [h(x +2) — h(x)[¢(x) dx
Rd

lz|<é

< (28" sup 8_5/ / [h(x +2z) —h(x —2)|Js()¢(x)dx dz + C28r||h||L1(Rd).
0<é<1 R4 JR4
(6.4)

Now we are in a position to state and prove a theorem regarding fractional BV
estimation of solutions of (6.2).

Theorem 6.2 (Fractional BV estimate) Let the assumptions A.l, A.3, B.1, B.2,
B.3 and B.4 hold. Let u. be a solution of (6.2) with the initial data uy(x) belongs to
the Besov space B{foo(Rd)for some | € (%, 1). Moreover, we assume that " € L.
Then, for fixed T > 0 and R > 0, there exits a constant C(T, R), independent of ¢,
such that forany 0 <t < T,

sup E[/ et x4+ ¥) = et 0| dx] = (T, RS
vi=s LJKg

for some r € (0, %) and Kg := {x : |x| < R}.

Proof Let ¢ € K := {¢ : |V¢| < C¢,|A¢| < C¢&} be any function. Then by
Lemma 7.1, there exists a sequence of functions {{g} C C*° (R?) such that, in par-
ticular, ¢z — ¢ pointwise. Let Js be a sequence of mollifier in R? as mentioned in
Lemma 6.1. Consider the test function

— +
YR (x, y) = Ja(xzy) cR(xzy).

In the sequel, with a slight abuse of notations, we denote s = %R and { = Cg.
Subtracting two solutions u.(t, x), u.(¢, y) of (6.2), and applying It6-Lévy formula
to that resulting equations, we obtain (cf. [14])
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B [, [ el =) st dx ]

B[, [ B0 = 0. str v dx ]
RrRd JRd

t
( x4y\, (¥ ,
]E/O/]Rf’ [ 7 (e (s, x), s (s, y)) - V ( : )Jg( . )dxdyds]

/ / (/7 (e (5. 30, (5. 0) = P 1050, (5. 9)) ) - Wy, ) ey s
0 JRd Rf’

E

+

+E / /R/Rd (AP o 3. 105, 0) A, W 6, ) + AP e (5, ), s (5, 3) A s (. ) dx dy ds |

+
/0 /RI/Rdsﬁg ug(r, x) — ug(r, y))]g (Ty) A¢ (x > y) dxdydr]

*E Z/ /Ri/ B (e (r, x) — ug (r, y))(gk(x ue(r, x)) — gy, ue (r, y))) s (x, y)dxdydr]

k=1

+1E / // / / ﬁg e (r,x) —ue(r, y) + p(n(x, ue (r, x); ) — n(y, ue(r, y); z)))
R4 JRd

x| n (e, e (r, %) 2) = (v, ue (r, ¥); 2 s (v, y)dpdxdym(dz)dr]. (6.5)

S

[
[
[
E[/O /Rd /Rd B (e 5. ) = 15, 1) (193 G e (5, D + V2 Gl (5, X)) Wi x, v) dx dy ds |
[
+E|

To this end, we see that

Vas (X, y) + Vys(x, y) =2V¢ (x er y) % (x ; y) ’

4P, v) = AP 0, 0)] = CIIA" oo Elu = .

Moreover, a similar analysis as in Lemma 4.6-(4.7) reveals that

t
/0 /]Rd /Rd (Aﬂ(us(s’ V) ue(s, X)) Ays(x, y)

+ AP (ue (s, ), ue (s, ¥) Axs (x, y)) dx dy ds

t
— " e , — u, , V G R , 2+ VxG . i 2
/0 /Rd /Rdﬁg (e (s, x) — ug(s y))(l yG (e (s, Y| + | (s (s, x))| )

X Ys(x,y)dxdyds
§4/3 54/3
S 82 ||€ ||L00(Rd)t +C— ||V§ ||Loc(]Rd)t

_/0 /de Biue (s, x) — ue(s, y)) [VeAue (s, x)) — Vy Aue(s, y))]

x Js (x > y)V{ (x-;y) dxdyds

4/3 g4/3
Coa I8l @yt + CT= IV | Loyt
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t —
+// / Af’(ug(s,xmg(s,y))-A;("”)Js(x y)dxdyds
0 JRd JRI 2 2

t
+ AP (uo (s, ). e (s, %)) — AP (1o (s, ), e (s,
/O/Rd/Rd( (u(sy)u(sx)) (u(sx)u(sy)))

Vy(Vg“ (x—;y) Js (x ; y))dxdyds,

where, in view of B.4, we have used the fact that (cf. Lemma 4.6)

A+ Ax 1+ Az
ug(s,x)
/ / [ / Bl (x = ve(s, ) [VB @) — VB (e s, y))]zdr}
1, JR? Ve (s,Y)
X Vyve (s, y) Vi s (%y) e (x —; y) dxdy ds]

ve(s,y)  pug(s,x)
_ ‘]E[/H /Rd [vy/ / Bl (x —0)[VB' (@) — VB (@) dr do]

o (s,x)

x Vi Js ()%){(c—;y) dxdyds]

:‘]E[/nt/w[/uv,g(‘v,y)/ug(mﬁs T_g)[m_%]zd”w]

o (s,x)

d1vy|:V Ja( 2y)§(x;y):|dxdyds]
< cs“”xa[/ / e (s, ¥) — g (s, )|
1, JRd

x |divy [vxja ()%) ¢ (x er y)” dx dy ds]

4/3 4/3
< C8_2||§||LOC(Rd)t + CT”V;”LW(R”[)I

At this point we let R — oo in the test function ¢ = ¢g. Moreover, keeping in mind
that for any function ¢ € I satisfies |V¢(x)| < C¢(x), and |A¢(x)] < C¢(x), we
have from (6.5)

E[/ / ﬂs(ug(t,X)—ue(t,y))llfa(x,y)dxdy]
R4 JRd
B[ [ B0 = 0. str v dx ]
Rd JRd

g4 £4/3
= o eyt + €= lEll o ray?

C(I1f Moo + 1A ls0) / / / [se (s, x) — e (s, y)\l( ) ( )dxdy]d
Rd
1" ! +
+cllf ||OQSIE[/0 /]R/]R |ue(s,x>—u£<s,y)|;(—2y)1,s (’“ . )dxdyds}
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e e B[ [ [ [ o -l (S5 ) 905 (S52) 10k ayas]
e e B[ [ [ [ o —uole (S52) 0 (F52) axavas]
+c|\A”||oosﬂ«:// / e 5, ) — e (5, ¢ (XZ}’)\V J,)( - )Idxdyds}
+Cs/IE /Rd/ ‘ug(r,x)—ug(r,y)‘Jg( zy);(x;y) dxdy]d

> / /R , [ B ) = e ) (g1 e r00) = e W) Wste, pdxdyr]

k=1

+E/// // B (e ) = e () + (0, e, %03 2) = (v, e, 1) )
0 JEJrd JR Jp=0

x| nCr, e () 2) = 0y, ue (r, ¥): )W e, y) dp dx dym(dz)dr]. (6.6)

=
+
~

+ oo

+

As before, with the help of the uniform moment estimate (2.1), and thanks to
Theorem 3.1, we can conclude

't
C||f”||oo€1E///}Ms(s,x)—ug(S,y)k(m)fa(x y) dxdyds]
+C||f”||oosxa// / lie (5, %) — e (s, )| € +y>|v Ja( )|dxdyds}
+C||A”||oor§E// / [se (s, x) — 1 (s, y)|{( ) ( )dxdyds}
R4 2
+C||A”||oo$E///|u5(s,x)—u€(s,y)|§(7)|v J,g( )ldxdyds]
0 Jrd JRrd 2

< C(I1f oo +11A"loc) (§ + s)II(IILoo@Rd)t (6.7)

Next, for the last two terms of (6.6), we follow the estimtes given in [4,10], to
conclude

E[> / [ [ B0 = e ) (autr 000 = e 30) ¥ita. )y ]
Rd JRd

k=1

<E[ Z/ L B ) = 030 () = g0 990) Wit ) ey )

k>1

+1E Z/ /Rd R,ﬁg ue (r, x) — ue (r, )))(gk(x ue(r, y)) — g (y, ue (r, )))) vs(x, y)dxdydr}

k=1

e[ [ [ [ #0 - w0 - ut )P vste dvay ar]
R4 JR

=

e[ [ [ [ s - u )y - vste pavayar]
R4 JRA

S

/ L, [ bl = o) vstr vy ar]
0 JRI JRA
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82 t
+C—]E[/ / \ﬁ(;(x,y)dxdydr]
§ 0 Jrd Jre
t 52
<CB[ [ [ [ Belustron) = o) wste  drdydr] + €Ll ©.8)
0 Jrd Jre §

and a similar estimate reveals that

t 1
E[/O /E/W/Rd/p:oﬁg’(us(r,x)—ug<r,y)+p(n<x,ue(r,x>;z)—n(y,us(r,y);z)))

% [0Cr. e (20 2) = (3, e, ¥); D s (v, ) dp dx dy m(dz) dr |
t 52
< CE[/O /]Rd /]Rd Be (ug(r,x) —ug(r, y))w(g(x, y)dx dydr] + Cgl“{”LI(Rd). »
(6.9)

Now we make use of (2.3), (6.7), and (6.9) to (6.6) and conclude

E[/ / |us(r,x)—us<t,y)|Js(x_y)c(”y)dxdy}

R4 JR4 2 2

sE[/ / |ug(0,x>—ug(o,y)|fa(x_y);(x+y) dxdy}
Rd JRd 2 2

4/3
+ C8—2||§ Il oo (ray?

+C(T+ 11 Moo + 114" lo0)

! x+y x—y
X/O E[/]Rd/ﬂ{d }ug(s,x)—ug(s,y)k (T)J(g( 2 )dxdy]ds

(32
+ CUILf oo + 1A [100) (€ + %)II{IILoo(RN +C(E + ?t) HEl L Raey- (6.10)

A simple application of Gronwall’s inequality reveals that

E[/ / |us(t,x)—ug(t,y)|la(Q)c(ﬁy) dxdy]
Rrd JRd 2 2

< exp! SO I HI4 1) E[/Rd /Rd 142 0, x) — e (0, )| Js (%) ¢ (x er y) dx dy]

m i 54/3 S
+ Cexp! €17 14l (—2||c||Loc<Rd>t (117" loo + 114" lloo) (€ + Z)11¢ 110w !

82
+(‘§+Et) ||;||L1(Rd)). 6.11)
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Choosing & = C8|7*2 in (6.11), we obtain

—y +
E[/Rd /Rd }ug(t,x) —ug(t, y)|15 (XT))f (x 2 y) dxdy]
' x—=y x4y
SC(T)IE[/W /Rd s (0, x) — e (0, )| Js (T);( . )dxdy]

2 2
+C)((67 + 8%V Ie N ooy + 8711611y ).

for some constant C(7T") > 0, independent of ¢.
Now we make use of the following change of variables
X—y _x+y

X = ,and y = ——,
) )

to rewrite the above inequality (dropping the bar). The result is

B[ [ [ et 3 et = ] as)c o ey
R JRd

< B [ [ 00545 ~u0.x = ) sce dxdy]
R4 JRRY
+C)((67 + 8l gy + 87118 11y ) (6.12)

In view of (6.4) of the Lemma 6.1, we obtain for0 < r < s < 1

sup ]E[/Rd |ug(t,x +y)— ug(t,x)|§'(x) dx]

[y|=<é

< Cy8" sup HE[/ / |us<z,x+y)—us(r,x—y)|Ja(y)c(x>dxdy]
0<6<1 R4 JR4

+ Cz(sr]EI:Hua(t, -)||L](Rd)]. (6.13)
Again, by (6.3) of the Lemma 6.1 and by (6.12), we see that for0 < r’ < s’ < 1

sup S‘SIE[/ / !us(t,x+y)—us(t,x—y)!J,s(y)C(X)dxdy]
0<é<l R4 JRd

=cm) sup 5B [ [ x4 ) us0ox = |05 00 vy
0<s<1 R4 JR

2
+C(T)87 (IlzllLoo(Rd)+||€||L1<Rd>)
< C(T)C1 87 sup (IyI’S,E[/ }“8(0’)‘”)_“g(o’x)k(x)dx])
ly|<é R
2
+C(T)s87™ (Il;llLoo(Rd> + ||€||L1(Rd>)
= )8 B[ ol oy | 1611w ey + CTI8T (el oo ey + 112111 )
< 0l gy @ay | 11811200 Ry LE@ T IRALED )
(6.14)
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Now we combine (6.13) and (6.14) to obtain

sup E[/]Rd |u5(t, X4y — ug(t,x)|§(x) dx]

lyl=<é

_ ’ 2_
<C(T) [8’ s E[IlMoIIBT/w(Rd)] + 8T (11211 oo (rey + ||§||L'(Rd))]

+ C2 SrE|:||u8(t, ')||L1(Rd)i|.
Setting ¥’ = s = 2, one gets, forany r < 2 and s’ > 2
77 k 7 77

sup E[/ |uet, x +y) — ue(t,x)‘g“(x)dx]
lyl<s -JRA

=y’ [E[Huoanfw(Rd)] + 11811 oo ey + llcllu(u@)} +C S’E[Ilua(h ~>||L1(Rd)].

Let Kg = {x : |x] < R}. Choose ¢ € K such that {(x) = 1 on K. Then, for r < %,
we have

sup E[/ |ue(t, x4+ y) — ue(t, )| dx:| <C(T,R)¢",
vi<s LJKg

which completes the proof. O

In view of the well-posedness results from [4, 10], we can finally claim the existence
of entropy solutions for (6.1) that satisfies the fractional BV estimate in Theorem 6.2.
In other words, we have the following theorem.

Theorem 6.3 Suppose that the assumptions A.2, A.3, A.5, B.2, and B.3 hold
and the initial data ug belong to the Besov space B{foo(Rd)for some | € (%, 1) and

E[ ||u0||iz(Rd) + lluoll 1 (rae) ] < 400. Then given such initial data uy, there exists an
entropy solution of (6.1) such that for any t > 0,

Bl (e, )12 g, | < +0.

Moreover, there exists a constant C # such that, forany 0 <t < T,

sup E[/ u(t, x +y) —u(t, x)| dxi| <Ccpe,
vi=s LJke

Sfor some r € (0, %) and Kg := {x : [x| < R}.

Acknowledgements Supported in part by Indo-French Centre for Applied Mathematics (IFCAM) and
Institute for the Sustainable Engineering of Fossil Resources (ISIFoR).
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7 Appendix

For the convenience of the reader, we include the proof of the first part of the The-
orem 3.1, that are frequently used in this paper. In what follows, we give a proof of
such estimate for a slightly general equation (6.1), where noise coefficients depend
explicitly on the spatial position x.

As we have seen from [4,10] that under natural assumptions on initial data, flux
functions, noise coefficients, and the fact that A : R — R is a nondecreasing Lipschitz
continuous function, viscous equation (6.1) has a weak solution u#, and moreover
(2.1) holds. To that context, under additional assumption on the initial data, ug €
L'(© x R?), we show that for fixed ¢ > 0, u, € L'(Q x II7). To do this, we
proceed as follows: let us consider a convex, even, approximation of the absolute-
value function B¢ defined as in Sect. 2: Remark 2.3, (2.4) and (2.5). Then, by applying
[t6-Lévy formula to fRd Be(ue(t, x)) dx, we conclude

t
IE/ ﬂg(ug(t,x))dx]—i-E// ﬁé’(ug(s,x))(lVG(ua(s,x))\z+8|Vu5(s,x)|2)dx:|
<E[ / B (o)) dx | / / B (e s, 0) f (e (s, %)) - Vite (s, x) dx ds |
+E / /]Rd// (l—A)nz(x,ug(s,x);z)ﬂg(ug(s,x)+)u7(x,ug(s,x);z))d)um(dz)dxds}

+ - / / G2 (x, e (s, ) BY (e 5. x))dxds:| (7.1)
Since B¢ is a convex function, we have from (7.1)
Bl [ petustrxnax] <[ [ et ds]
<_E / / BY (e (5, X)) f (s (s, %)) - Vatg (s, x) dx ds]
+]E / / // (1 — W)n*(x, ugs (s, x); DBE
0 JRIJE JO
X (ug(s, x) + An(x, ug(s, x); z)) dirm(dz)dx ds]

t
+ %E[/o /Rd G (&, we (s, ) B (1 (s, )) dx s
=Ai(e, §) + Aa(e, &) + Az (e, §). (7.2)

Next, we estimate each of the above terms separately. Let us first remark that a sim-
ple application of chain-rule implies that A4;(¢, &) = 0. We now move on to the
term A (e, &). In view of assumptions B.2, and B.3 along with (2.3), similar to the
estimation G in Sect. 3 yields

0 <n(x, e (s, x); 2)BY (e (s, x) + A0 (x, ue (s, x); 2)
<R (@) lue (s, ) P BY (e (s, x) + An(x, ue (s, x): 2))
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_%l 6 (5, %) + An(x, ue(s, x); 2)[ BE (e (s, x) 4+ An(x, ue (s, x); 2))
< %ﬂs(ue@ X) + An(x, ue (s, x); 7))
_4%550%(&)6” + n(x, ue (s, x); 2))
_4%&((1 + M) |ue (s, x)]) < 4h2(2)%ﬂ5 (e (s, x)),

and this implies that

t
|A2(s, S)‘ SCE[// /hz(z)m(dz)ﬁg(ug(s,x))dxds]
0 JRIJE
t
§CE[// Be (s (5, ) d ds . (7.3)
0 JRd

Again, we use assumption B.1 to conclude

t
| As(e,6)| < CE[/O /Rd Be (e (s, x)) dx ds]. (7.4)

Thus, combining all the above estimates (7.3)-(7.4) in (7.2), we arrive at

IE[/Rd Be (ue (1, x))dx] < C/OIIE[/Rd Be (e (s, x)) dx] ds + E[/Rd ﬂg(uo(x))dx],

and this implies

E[/Rd Be (ug(t,x))dx] < C]E[/Rd ﬂg(uo(x))dx]. (1.5)

Passing to the limit with respect to £ yields

E[/Rd Jue(t, )] dx] < CE[/Rd o) dx] (7.6)

This implies that, u, € L! (2 x Ir), for every fixed ¢ > 0.

Finally, we finish this section by introducing a special class of functions, which
plays a pivotal role in our analysis. To that context, let us define the set I consisting
of non-zero ¢ € C*(R%) N L1 (R?) N L>®(R¥) for which there is a constant C such
that |V¢(x)| < C¢(x), and |AZ(x)| < C¢(x). Then we have the following Lemma:

Lemma 7.1 Let ¢ € K be any element. Then there exists {{r}g-1 C C° (R?) such
that

LR > ¢, Vg V¢, and ALr — AL pointwise in RY, as R > 0.
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Proof Note that, modulo a mollification step, we can assume that { € C“(Rd).
Letn € Cfo(Rd) be such that 0 < n < 1, and n(0) = 1. Let us define {r(x) =
¢(x)n(x/R). Then a straightforward computation yields

1
Vir(x) = VE(x)n(x/R) + EC(x)Vn(X/R),

1 2
Alr(x) = ALX)N(/R) + 78 () An(x/R) + S VIX)Vn(x/R).

Taking limit as R +— oo concludes the proof. O
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